A comparison of the pentaammine(pyridyl)ruthenium(II) and 4-(dimethylamino)phenyl groups as electron donors for quadratic non-linear optics

Benjamin J. Coe,**a* James A. Harris,*a* Koen Clays,*b* André Persoons,*b*,*c* Kurt Wostyn*b* and Bruce S. Brunschwig^d

- ^a Department of Chemistry, University of Manchester, Oxford Road, Manchester, UK M13 9PL. E-mail: b.coe@man.ac.uk
- ^b Department of Chemistry, University of Leuven, Celestijnenlaan 200D, B-3001 Leuven, Belgium
- ^c Optical Sciences Center, University of Arizona, Tucson, Arizona, AZ 85721, USA
- ^d Chemistry Department, Brookhaven National Laboratory, P.O. Box 5000, Upton, New York 11973-5000, USA

Received (in Cambridge, UK) 19th April 2001, Accepted 13th June 2001 First published as an Advance Article on the web 1st August 2001

Hyper-Rayleigh scattering and Stark spectroscopic studies show that the complex salts [1–4]PF₆ have larger static first hyperpolarizabilities β_0 than [5–8]PF₆, because the higher HOMO energy of a {Ru^{II}(NH₃)₅}²⁺ centre more than offsets the superior π -orbital overlap in the purely organic chromophores.

Recent years have witnessed great interest in molecular materials having non-linear optical (NLO) properties, due to their potential for applications in nascent optoelectronic/ photonic technologies.¹ Most such materials are purely organic, but organotransition metal complexes also exhibit NLO effects.² Our contribution to this field has focused on the quadratic NLO properties of dipolar Ru^{II} ammine complexes.³

Molecules with large quadratic NLO activities contain electron donor and acceptor groups connected via polarisable π systems. Molecular quadratic NLO behaviour arises from first hyperpolarizabilities β , and static first hyperpolarizabilities β_0 are used for comparison purposes. Perhaps surprisingly, quantitative, systematic comparisons of the electron donor/ acceptor properties of metal centres with those of more traditional organic groups are very scarce. Indeed, the only such study appears to be a ZINDO analysis of β values which showed that the ferrocenyl and 4-(methoxy)phenyl donor groups are essentially interchangeable.⁴ Here we report an experimental study of the complex salts [1–4]PF₆ and the organics [5–8]PF₆ which allows a comparison of the {Ru^{II}(NH₃)₅(py)}²⁺ (py = pyridyl) and 4-(dimethylamino)phenyl π -electron donors.

R = Me (1), Ph (2), 2,4-DNPh (3), 2-Pym (4)

R = Me (5), Ph (6), 2.4-DNPh (7), 2-Pvm (8)

[1–4]PF₆^{3b,c} and [5–7]Cl⁵ were synthesized as described previously, and [5–7]Cl were metathesised to [5–7]PF₆ by precipitation from $H_2O-NH_4PF_6$,[†] [8]PF₆ was prepared from 4-(dimethylaminophenyl)pyridine⁶ and 2-chloropyrimidine, followed by precipitation from $H_2O-NH_4PF_6$,[†]

Selected spectroscopic and electrochemical data for $[1-8]PF_6$ are given in Table 1. The visible absorptions of $[1-4]PF_6$ are due to $d_{\pi}(Ru^{II}) \rightarrow p_{\pi^*}(pyridinium)$ charge-transfer (CT) excitations,^{3b,c} whilst those of $[5-8]PF_6$ arise from $p_{\pi}(NMe_2) \rightarrow$ $p_{\pi^*}(pyridinium)$ CTs. The CT energies E_{max} of $[5-8]PF_6$ are higher than those of $[1-4]PF_6$, but the organic *vs*. complex energy difference decreases from 0.85 to 0.72 eV as R changes in the order Me > Ph > 2,4-DNPh > 2-Pym. Also, the molar extinction coefficients of the CT bands of [**5–8**]PF₆ are *ca*. 2–3 times larger than those of [**1–4**]PF₆. Within both series, E_{max} decreases as R changes in the order Me > Ph > 2,4-DNPh > 2-Pym, the differences between the extremes being 0.26 eV for [**1–4**]PF₆ and 0.39 eV for [**5–8**]PF₆.

The cyclic voltammetric data show that the $\{Ru^{II}(NH_3)_5\}^{2+}$ moiety is much easier to oxidise than the -NMe₂ group, and the pyridinium groups in the complexes are easier to reduce than those in the organics. These observations are consistent with the lower E_{max} values, due to smaller HOMO–LUMO gaps, for [1–4]PF₆ compared with [5–8]PF₆. Furthermore, the E_{red} values show that the $-C_6H_4NMe_2-4$ group exerts a greater electrondonating influence on the acceptors than does the $\{Ru^{II}(NH_3)_5(py)\}^{2+}$ moiety, despite the fact that the $\{Ru^{II} (NH_3)_5$ ²⁺ centre is more electron-rich than the $-NMe_2$ group. $E_{\rm ox}$ does not change greatly within each series, but $E_{\rm red}$ becomes less negative as R changes in the order Me < Ph < 2-Pym <2,4-DNPh. This trend almost parallels the decreasing CT energies and reflects the increasing electron-deficiency of the acceptor group. The NMR data show that the protons ortho to the pyridinium N atoms are more shielded in $[5-8]PF_6$, consistent with the greater net electron-donating effect of the $-C_6H_4NMe_2-4$ group vs. {Ru^{II}(NH₃)₅(py)}²⁺.

The greater electron-donating influence of a $-C_6H_4NMe_2-4$ group compared with $\{Ru^{II}(NH_3)_5(py)\}^{2+}$ can be traced to two

Table 1 Visible absorption, cyclic voltammetric and proton NMR data for salts $[1{\rm -}8]{\rm PF}_6$

	E / Ja	<i>E</i> /V (<i>v</i>) <i>b</i> S/a a a a a	
Salt	$\mathcal{E}_{\text{max}}/\text{ev}^{a}$ ($\mathcal{E}/\text{dm}^{3} \text{ mol}^{-1} \text{ cm}^{-1}$)	E_{ox}^{d}	$E_{\rm red}^e$	- ∂/ppm ^c py-H⁄
$[1]PF_{6}^{g}$	2.10 (15 800)	0.48	-0.89	9.15
$[2] PF_6^g$	1.97 (19 300)	0.48	-0.73	9.33
$[3] PF_6^g$	1.88 (16 900)	0.48	-0.38	9.37
$[4]PF_6^h$	1.84 (18 000)	0.51	-0.43	10.17
[5]PF ₆	2.95 (40 200)	1.14	-1.35	8.76
[6]PF ₆	2.77 (50 100)	1.18	-1.11	9.01
[7]PF ₆	2.64 (45 300)	1.27	-0.55	9.23
[8]PF ₆	2.56 (55 600)	1.22	-0.81	9.78

^{*a*} Using acetonitrile solutions (*ca.* 10^{-5} mol dm⁻³). ^{*b*} Measured in acetonitrile solutions *ca.* 10^{-3} mol dm⁻³ in analyte and 0.1 mol dm⁻³ in NBuⁿ₄PF₆ at a platinum-bead/disc working electrode with a scan rate of 200 mV s⁻¹. $E_{1/2}$ values are given for [1]PF₆, [2]PF₆ and [4]PF₆; E_{pa} or E_{pc} values are given for [3]PF₆ and [5–8]PF₆ (return waves are also observed in some cases). Ferrocene internal reference $E_{1/2} = 0.43$ V. ^{*c*} Chemical shift at 200 MHz with respect to SiMe₄ in CD₃COCD₃. ^{*d*} Potential for first oxidation of HOMO. ^{*e*} Potential for first reduction of LUMO. ^{*f*} Doublet signal for protons *ortho* to pyridinium N atom. ^{*g*} Ref. 3(*b*). ^{*h*} Ref. 3(*c*).

Table 2 Visible absorption, Stark and HRS data for salts [1-8]PF₆

Salt	$E_{\rm max}/{\rm eV}^a$	$f_{\rm os}{}^b$	$ \mu_{12} /D$	$ \Delta \mu_{12} /D$	$\Delta \mu_{ab}/{ m D}$	c_b^2	$H_{\mathrm{ab}}/10^3$ cm ⁻¹	$\beta_0/10^{-30}$ esu ^c	$\beta/10^{-30}$ esu ^d	$\beta_0/10^{-30}$ esu ^e
[1]PF ₆	1.92	0.20	5.2	13.8	17.3	0.10	4.7	60	750 ^f	123 ^f
$[2]PF_6$	1.78	0.22	5.7	15.3	19.1	0.10	4.3	93	858 ^f	220 ^f
[3]PF ₆	1.70	0.22	5.8	16.3	20.0	0.09	4.0	113	871 ^f	289 ^f
$[4]PF_6$	1.64	0.28	6.7						640 ^g	230 ^g
[5]PF ₆	2.93	0.66	7.7	13.2	20.3	0.17	9.0	54		
[6]PF ₆	2.74	0.79	8.7	12.7	21.6	0.21	8.9	75	50	23
[7]PF ₆	2.64	0.66	8.1						70	29
[8]PF ₆	2.52	0.88	9.6	12.4	22.9	0.23	8.5	106	75	29

^{*a*} Butyronitrile glasses at 77 K (*ca*). 10⁻⁵ mol dm⁻³). ^{*b*} Oscillator strength determined by numerical integration of the digitized absorption spectra. ^{*c*} Static first hyperpolarizability calculated from eqn. (1). ^{*d*} First hyperpolarizability measured in acetonitrile at 298 K using a ns 1064 nm laser for [1–4]PF₆ and a fs 1300 nm laser for [5–8]PF₆. ^{*e*} Static first hyperpolarizability estimated from β *via* the two-state model.^{9 f} Ref. 3(*b*). ^{*s*} Ref. 3(*c*).

factors. Firstly, the latter is a σ -electron acceptor, as well as a π -donor, whilst the former is only a π -donor. The second, and perhaps more important, factor is more effective p(N)-p(C) compared with $p(N)-d(Ru) \pi$ -orbital overlap. Such an effect also explains differences between mixed-valence ions containing $-C_6H_4NMe_2$ -4 or $\{Ru^{II}(NH_3)_5(py)\}^{2+}$ groups.⁷

We have obtained β values for $[1-8]PF_6$ by using hyper-Rayleigh scattering (HRS) studies;⁸ β_0 values were derived *via* the two-state model⁹ and results are shown in Table 2. The previously reported β_0 values of $[1-4]PF_6$ were derived from nanosecond 1064 nm HRS,^{3b,c} whilst [5-8]PF₆ were studied using femtosecond 1300 nm HRS,¹⁰ incorporating fluorescence demodulation.¹¹ Unfortunately, the 650 nm HRS signal from [5]PF₆ was too weak to allow determination of β . Two conclusions can be drawn from the HRS data: (*i*) the β_0 values of the complexes appear to be much larger than those of their organic counterparts (but note that comparison of HRS β_0 values obtained under different experimental conditions may be of limited validity),¹² and (*ii*) decreasing E_{max} generally corresponds with increasing β_0 within both series.

Stark spectroscopy affords dipole moment changes upon CT excitation $\Delta \mu_{12}$.¹³ According to the two-state model, $\Delta \mu_{12}$ can be used to calculate β_0 by using eqn. (1)⁹

$$\beta_0 = \frac{3\Delta\mu_{12}(\mu_{12})^2}{2(E_{\text{max}})^2} \tag{1}$$

where μ_{12} is the transition dipole moment. The results of Stark studies on [1–8]PF₆, carried out at 77 K as previously described,¹⁴ are given in Table 2. Unfortunately, the data fits for [4]PF₆ and [7]PF₆ were unsatisfactory. The μ_{12} values, diabatic dipole moment changes $\Delta \mu_{ab}$, mixing coefficients c_b^2 and electronic coupling matrix elements H_{ab} for the diabatic states were calculated as previously described.¹⁴

The CT f_{os} and μ_{12} values of [5–8]PF₆ are larger than those of [1–4]PF₆. Furthermore, μ_{12} generally increases as E_{max} decreases within each series. [1–8]PF₆ show relatively large $\Delta \mu_{12}$ values, with [1]PF₆ and [2]PF₆ having larger values than [5]PF₆ and [6]PF₆, respectively. For the complexes, $\Delta \mu_{12}$ increases as R changes in the order Me < Ph < 2,4-DNPh, but a similar trend is not shown by the organics. The values of c_b^2 and H_{ab} for the organics are about twice those for the complexes, consistent with the less effective d(Ru)–p(N) vs. p(N)–p(C) π -orbital overlap indicated by the electrochemical and NMR data. The β_0 values derived from eqn. (1) are in agreement with the HRS results in as much as they increase as E_{max} decreases within each series. However, in contrast with HRS, the Stark data indicate that the β_0 values of [1]PF₆ and [2]PF₆ are only slightly larger than those of their organic counterparts. This is because the β_0 -enhancing effects of

decreasing E_{max} and increasing $\Delta \mu_{12}$ are largely offset by decreasing μ_{12} when moving from organic to complex.

In conclusion, a { $Ru^{II}(NH_3)_5(py)$ }²⁺ centre is more electronrich than a $-C_6H_4NMe_2$ -4 group, but the latter exerts a greater electron-donating effect on pyridinium units due in part to more effective π -orbital overlap. HRS data show that [1–4]PF₆ have much larger β_0 values than their organic counterparts, but Stark spectroscopy indicates that the increase in β_0 between the complexes and organics is much smaller. Nevertheless, the complexes do have the added attraction that their CT absorption and NLO responses are redox-switchable.¹⁵

We thank the EPSRC for a PhD studentship (J. A. H.). Studies at Brookhaven National Laboratory were carried out under contract DE-AC02-98CH10886 with the US Department of Energy and supported by its Division of Chemical Sciences, Office of Basic Energy Sciences. K. W. is a research assistant with the Fund for Scientific Research-Flanders.

Notes and references

 \dagger [5–8]PF₆ were characterised by C,H,N analyses and proton NMR spectroscopy.

- Nonlinear Optics of Organic Molecules and Polymers, ed. H. S. Nalwa and S. Miyata, CRC Press, Boca Raton, FL, 1997.
- 2 N. J. Long, Angew. Chem., Int. Ed. Engl., 1995, 34, 21.
- 3 (a) B. J. Coe, M. C. Chamberlain, J. P. Essex-Lopresti, S. Gaines, J. C. Jeffery, S. Houbrechts and A. Persoons, *Inorg. Chem.*, 1997, **36**, 3284; (b) B. J. Coe, J. A. Harris, L. J. Harrington, J. C. Jeffery, L. H. Rees, S. Houbrechts and A. Persoons, *Inorg. Chem.*, 1998, **37**, 3391; (c) B. J. Coe, J. A. Harris, I. Asselberghs, A. Persoons, J. C. Jeffery, L. H. Rees, T. Gelbrich and M. B. Hursthouse, *J. Chem. Soc., Dalton Trans.*, 1999, 3617.
- 4 D. R. Kanis, M. A. Ratner and T. J. Marks, J. Am. Chem. Soc., 1992, 114, 10338.
- 5 M. G. Hutchings, Tetrahedron, 1984, 40, 2061.
- 6 A. N. Kost, A. K. Sheinkman and N. F. Kazarinova, J. Gen. Chem. USSR, 1964, 34, 2059.
- 7 S. F. Nelsen, H. Q. Tran and M. A. Nagy, J. Am. Chem. Soc., 1998, 120, 298.
- 8 E. Hendrickx, K. Clays and A. Persoons, Acc. Chem. Res., 1998, 31, 675.
- 9 J. Zyss and J. L. Oudar, Phys. Rev. A, 1982, 26, 2016.
- 10 G. Olbrechts, K. Wostyn, K. Clays and A. Persoons, *Opt. Lett.*, 1999, 24, 403.
- 11 G. Olbrechts, R. Strobbe, K. Clays and A. Persoons, *Rev. Sci. Instrum.*, 1998, **69**, 2233.
- 12 P. Kaatz and D. P. Shelton, J. Chem. Phys., 1996, 105, 3918.
- 13 G. Bublitz and S. G. Boxer, Ann. Rev. Phys. Chem., 1997, 48, 213.
- 14 Y. K. Shin, B. S. Brunschwig, C. Creutz and N. Sutin, J. Phys. Chem., 1996, 100, 8157.
- 15 B. J. Coe, S. Houbrechts, I. Asselberghs and A. Persoons, Angew. Chem., Int. Ed., 1999, 38, 366; B. J. Coe, Chem. Eur. J., 1999, 5, 2464.